A noninformative Bayesian approach to small area estimation

نویسنده

  • Glen Meeden
چکیده

1 SUMMARY In small area estimation one uses data from similar domains to estimate the mean in a particular small area. This borrowing of strength is justified by assuming a model which relates the small area means. Here we suggest a noninformative or objective Bayesian approach to small area estimation. Using this approach one can estimate population parameters other than means and find sensible estimates of their precision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Steatosis Prevalence in Overweight and Obese Children: Comparison of Bayesian Small Area and Direct Methods

Background Often, there is no access to sufficient sample size to estimate the prevalence using the method of direct estimator in all areas. The aim of this study was to compare small area’s Bayesian method and direct method in estimating the prevalence of steatosis in obese and overweight children. Materials and Methods: In this cross-sectional study, was conducted on 150 overweight and obese ...

متن کامل

A noninformative Bayesian approach to domain estimation

SUMMARY Rather than an estimate of the population mean or total sometimes an estimate of the mean or total of a subpopulation or domain is desired. For such problems the number of units in the sample that fall into the domain is a random variable. This causes some complications for the usual frequen-tist approach. Here we give a simple and coherent noninformative Bayesian approach to domain est...

متن کامل

THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)

Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.  Small area estimation is needed  in obtaining information on a small area, such as sub-district or village.  Generally, in some cases, small area estimation uses parametric modeling.  But in fact, a lot of models have no linear relationship between the small area average and the covariat...

متن کامل

A Bayesian Nominal Regression Model with Random Effects for Analysing Tehran Labor Force Survey Data

Large survey data are often accompanied by sampling weights that reflect the inequality probabilities for selecting samples in complex sampling. Sampling weights act as an expansion factor that, by scaling the subjects, turns the sample into a representative of the community. The quasi-maximum likelihood method is one of the approaches for considering sampling weights in the frequentist framewo...

متن کامل

Noninformative nonparametric quantile estimation for simple random samples

For noninformative nonparametric estimation of finite population quantiles under simple random sampling, estimation based on the Polya posterior is similar to estimation based on the Bayesian approach developed by Ericson (1969, JRSSB, 31, 195-233) in that the Polya posterior distribution is the limit of Ericson’s posterior distributions as the weight placed on the prior distribution diminishes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001